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Figure 1: Left: participant in VR experiment. Right: participant feld of view during card selection. 

ABSTRACT 
Algorithms engineered to leverage rich behavioral and biometric 
data to predict individual attributes and actions continue to perme-
ate public and private life. A fundamental risk may emerge from 
misconceptions about the sensitivity of such data, as well as the 
agency of individuals to protect their privacy when fne-grained 
(and possibly involuntary) behavior is tracked. In this work, we 
examine how individuals adjust their behavior when incentivized 
to avoid the algorithmic prediction of their intent. We present re-
sults from a virtual reality task in which gaze, movement, and other 
physiological signals are tracked. Participants are asked to decide 
which card to select without an algorithmic adversary anticipat-
ing their choice. We fnd that while participants use a variety of 
strategies, data collected remains highly predictive of choice (80% 
accuracy). Additionally, a signifcant portion of participants became 
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more predictable despite eforts to obfuscate, possibly indicating 
mistaken priors about the dynamics of algorithmic prediction. 
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1 INTRODUCTION 
In a world in which sensing devices permeate both public and pri-
vate domains, consumers [17], renters [13], voters [9], and decision-
makers of all kinds are now subject to unprecedented levels of 
surveillance during day-to-day life: from the tracking of search 
queries to face and ‘emotion recognition’ [8], to geospatial location 
and physiology [4]. The data produced by sensors and software 
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capturing these signals are now and will continue to be analyzed by 
increasingly advanced statistical techniques and algorithms with 
a specifc interest in inferring internal states that might predict 
the future actions of individuals. Constituting what Zubof terms 
the ‘Big Other’, this constellation of tracking infrastructure uses 
opaque mechanisms to detect and control behavior, and ultimately 
poses a threat to both individual privacy and democratic norms at 
large [38]. 

According to Nissembaum’s contextual integrity heuristic, pri-
vacy is best understood as a set of appropriate information fows 
subject to contextual norms dependent on parameters such as the 
data subject, parties, information type, and principles of transmis-
sion [26]. As proposed by Sedenberg et al. 2017, the privacy threats 
posed by remote biometric sensing can be seen as shifts or breaches 
of these contextual norms: “...when biosensed data like emotions 
or internal physiological states are systematically recorded and an-
alyzed, all signals become magnifed beyond their original natural 
public scope” [34]. Indeed, remote sensing systems of this kind have 
already generated real-world contexts within which actors may 
hope to predict internal beliefs or preferences from biometric data, 
and for which the obfuscation of these beliefs may be benefcial 
to the individual. One such example is individually targeted price 
discrimination in a physical retail setting where video feeds may af-
ford gaze tracking (see commercial use of "Smart-shelf" technology 
reported in 2013[7]). 

Thanks to journalistic and public service eforts, an awareness 
of these threats is growing, but individuals still hold signifcant 
misconceptions about the sensitivity of information that can be 
inferred from these types of data [23], and what agency they have 
in protecting their privacy. 

In this work, we designed a Virtual Reality (VR)-based behav-
ioral experiment in which participants completed an iterative binary 
decision task. In later trials, participants were informed of an adver-
sary that is tracking their behavior and attempting to predict each 
choice. Questionnaire responses, post-task interviews and quanti-
tative analyses of biometric data indicate that participants used a 
variety of behavioral strategies and felt confdent in their agency in 
avoiding prediction. While some participants adjusted their behav-
ior in ways that reduced prediction accuracy, a strong majority of 
trials could still be successfully classifed based on biometric data 
despite these eforts. 

1.1 Background 
1.1.1 Embodied Cognition and Decisions. A valuable perspective 
on the privacy of decisions in a tracked environment comes from a 
multidisciplinary literature which integrates embodied, enactive, 
extended, and embedded accounts of cognition (referred to as ‘4E 
Cognition’). In a 2015 paper, Lepora and Pezzulo introduced the 
Embodied Choice framework (EC) which recasts decision-making 
as a dynamic and inherently active process rather than a sequential 
perception-decision-execution cycle [18]. In a visual decision task, 
the authors tracked the correlates of active consideration via move-
ments of a mouse towards a target. These ideas are inspired by and 
consistent with Active Inference, a formal framework modeling 
situated action in which agents minimize their prediction error 
by entraining available sensors in such a way as to disambiguate 

competing perceptual hypotheses [35]. In this framework, percepts 
can be seen as hypotheses (e.g. the dog is hungry, or the customer is 
planning to buy some fowers), and the ocular motor outputs that 
produce saccades (eye movements) are seen as experiments aiming 
to confrm or deny prior beliefs [12]. 

In another behavioral experiment looking at embodied decision-
making, Beilock and Holt found that the visual perception of stimuli 
can recruit the motor system into action simulation (the production 
of potentially detectable micro-motor outputs) which can infuence 
afective judgments [6]. Together, research within this school of 
thought encourages us to reconsider traditional notions of passive 
perception followed by active decisions, and instead see decision-
making as a continuous and dynamic process. In this light, sensed 
biometric data may serve as a correlate to deliberative processes. 
The privacy implications stemming from this reasoning have not 
yet been sufciently investigated. 

1.1.2 Eye Tracking, Virtual Reality, and Privacy. Eye-tracking tech-
nology is far from new, but the increasing prevalence of video 
capture systems and improved algorithms for accurately inferring 
gaze direction [19] make it especially relevant to conversations 
around modern algorithmic surveillance. Further, the breadth of 
application areas being explored for eye-tracking—as a novel UI 
selection afordance [30], a method to augment user experience 
via attentional awareness [37], and an opportunity to gain com-
putational efciencies via foveated rendering [27], among many 
others—reinforces the belief of some researchers that eye tracking 
technology will soon be ubiquitous [20]. 

Beyond eye-tracking, a critical body of literature has explored the 
deleterious efects of various regimes of biometric surveillance [22, 
31], including works specifcally highlighting the dangers when 
these technologies are targeted at marginalized groups [21], and 
the unique efects of systems purporting to monitor internal states 
such as afect [8]. The documentation of surveillance harms ofered 
by these scholars, among others, provided a key motivation for the 
present work. 

Scholars in HCI have ofered a variety of perspectives on privacy 
concerns relating to the use of consumer remote sensing technolo-
gies such as Internet of things (IoT) products like smart speakers, 
and augmented reality (AR) devices. Denning et al. explored the 
perceptions and privacy concerns of bystanders to the use of glasses-
style AR devices which may record video of people and surround-
ings [10]. In a 2014 review, Roesner et al. identifed several key 
challenges and risks of AR systems, including adversarial attacks 
to both input and output channels, and theft or misuse of sensor 
data [33]. Recent work by Ahmad et al. raises concerns over privacy 
ambiguity imposed by ‘always-on’ IoT devices, and introduces the 
concept of tangible privacy—design features that allow bystanders 
to clearly assess the state of a device’s sensors [1]. 

We chose to implement our study using a VR-based laboratory 
precisely because of the ease of collecting not only gaze targets, but 
a rich stream of sensor data allowing us to measure our participants’ 
in-task behavior at a fne level of granularity. Indeed, the potential 
to develop machine learning-based predictive models trained on VR 
biometric data, some of it imperceptible to human observers, has not 
gone unnoticed by businesses and entrepreneurs [24]. The ethical 
questions raised by this new domain, which is quickly developing 
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on interrelated but discrete paths in the private sector and academia, 
are diverse and poignant. A frst of its kind conference was held 
in 2018 proposing to construct a “VR bill of rights” [15], and an 
opinion article by Jeremy Bailenson in the same year highlighted 
the capabilities and dangers of biometric data collected in VR [3]. 

While immersive VR clearly comes with a host of potential pri-
vacy concerns, our primary interest centers around VR as a research 
tool. The VR-based setup allows us to probe the sensitivity of col-
lected data, as well as the psychology infuencing the perception 
of surveillance, in both in-home and public settings. Ultimately, 
we see the virtual laboratory as ofering researchers a controllable, 
replicable setting enabling the study of human behavior in a real 
world increasingly subject to surveillance. 

1.2 Research Questions 
Though biometric surveillance has attracted extensive scholarship, 
few quantitative behavioral studies have shed light on the expecta-
tions, assumptions, and range of behavioral responses employed 
by individuals hoping to evade prediction by an adversarial system. 
In this work, we aim to explore the following questions: 

(1) RQ1: Under what conditions might biometric signals such 
as motor outputs, eye movements, -and electrodermal ac
tivity expose sensitive information relating to beliefs and 
immediate choice intentions? 

(2) RQ2: How efectively can commonly used machine learning 
models predict choice intention given behavioral data during 
decision-making? 

(3) RQ3: What strategies are used by participants when in-
structed to make unpredictable decisions in a simple tracked 
setting? 

(4) RQ4: How efective are the employed strategies at maintain-
ing an individual’s privacy of intent? 

We note that as per RQ2, we seek to understand the approximate 
performance of minimally tuned of-the-shelf tools, rather than to 
estimate an upper bound on prediction accuracy. The development 
of novel algorithms that might improve performance on this predic-
tion task were not among the objectives of this work (see Section 
4.4 for discussion). 

2 METHODS 

2.1 Task Design 
In order to study human behaviors related to the protection of pri-
vate intent, we developed a game-based experiment in which par-
ticipants were sufciently motivated to avoid predictability while 
behaving in a physical environment. Specifcally, we defned the 
following desiderata to constrain experimental design: 

(1) Covert imperative. Participants should be sufciently in-
centivized to obscure their intent. 

(2) Non-trivial choice-salience. Decisions made in the task 
must infuence a relevant outcome (e.g. compensation); par-
ticipants must consider an extrinsic value of their choice 
separate from masking intent. 

(3) Embodied. Choices should be enacted by gross motor out-
puts as opposed to verbal reports to allow for action simula-
tion or other micro-motor outputs to be detectable. 

2.2 Covert Embodied Choice Task 
Based on these criteria, we designed a virtual reality task (inspired 
by the popular game Set) as follows. 

In each trial, the participant is presented with two cards in a 
private ‘hand’ facing them, and two cards fat on a table (see Figure 
2). During the 10-second decision phase, they must choose one 
of the two single cards on the table. Then, during the 3-second 
selection phase, they use the controller to bring the chosen card into 
their hand to complete a trial. A trial is successful if the resulting 
three cards in the hand form a complete ‘match’. A successful match 
is defned as three cards for which both card attributes: count and 
shape are either all the same or all diferent. A trial is completed 
either upon the participant’s releasing their chosen card into their 
hand, or when the selection timer elapses. A new trial is started 
after completion of the last, with a new deal of two private and two 
table cards. 

See Section 2.4 for a more detailed description of the task and 
experimental protocol. 

2.3 Participants 
Study participants were recruited via e-mail through an on-campus 
experimental lab at a public university in the United States. Partici-
pants were screened to minimize the risk of adverse efects from 
the use of VR: participants indicating dizziness or nausea during 
prior uses of VR, epilepsy, a history of seizures, or that they are 
prone to motion sickness, were not considered for the full study. 

To support the use of parametric tests with our mixed between-
subjects and within-subjects design, we selected a target sample 
size of 35 subjects per group (70 total). Since machine-learning-
based classifcation accuracy was a primary dependent variable, it 
was critical to ensure both that (1) the training set contained suf-
cient data with respect to the dimensionality of the feature-space 
and complexity of the model to efectively generalize, and (2) that 
the test set was large enough to accurately estimate model perfor-
mance. Despite stopping data collection early due to the COVID-19 
pandemic (with 57 completions), our resultant dataset included 
1200 non-practice subject-trials which we deemed sufcient for our 
planned analysis. 

Two participants were dropped after they indicated in the post-
experiment interview that they misunderstood the instructions and 
believed the task was to enable the adversary to predict their intent 
(PP 004), or provide training labels to the adversary (PP 041). 

Participants were randomly placed into one of the two study 
conditions: early adversary (N=27), or delayed adversary (N=28). 
The two study conditions operated identically except for the trial 
number at which the adversary info screen appeared (see 2.4), al-
lowing us to control for potential learning efects. Participants had 
a mean age of 20.4 ± 4.6, 34 identifed themselves as female, and 
21 as male. 47.3% reported their race as Asian, 34.5% white, 1.8% 
American Indian or Alaska Native, 1.8% Native Hawaiian or Pacifc 
Islander, and 14.5% Other, including Asian & white, and Middle East-
ern. 16.4% of participants identifed as Spanish, Hispanic, or Latino. 
All participants were undergraduate students, graduate students or 
staf at the university where the study was conducted. 
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2.4 Experimental Procedure 
After providing consent, each participant went through a self-paced 
slide-based tutorial using the experiment computer. The tutorial 
explained the pattern matching task, and provided quizzes to ensure 
the participant had understood how to identify a match consistent 
with the rules of the game. The tutorial also detailed how a fnal 
success score would be calculated, and the monetary bonus that 
would be provided depending on this score. Bonuses were calcu-
lated based on the percent of successful rounds (a correct match 
for pre-adversary rounds, and both a correct match and the avoid-
ance of prediction in the adversarial rounds), however information 
about the adversary was not presented until later. All participants 
received the base compensation ($20) for their participation, with 
performance-based rewards contributing an additional 0-25% of 
the base level. At the end of the tutorial the experimenter gave the 
participant an opportunity to ask any clarifying questions. 

Next, the experimenter ftted the participant with an Empatica 
E4 skin conductance and heart rate monitor, and a Vive Pro Eye VR 
headset. The participant completes a brief exercise in which they 
fxate on targets that appear on the screen in sequence to calibrate 
the in-unit eye tracking system. Once complete, the participant 
was asked to use the trigger on the controller to begin the frst of 
four (unscored) practice rounds in the experiment. The practice 
rounds simulate a normal trial, and allow the participant to become 
comfortable with the mechanics of the interaction in VR. Practice 
rounds, like regular rounds, had a 10-second decision timer, and 
3-second selection timer, so that participants learned how to make 
their selection in the allotted time. 

Figure 2: Left: schematic of subject during a trial. Top-right: 
participant in VR. Bottom-right: participant’s feld of view 
during card selection. 

After completing all four practice rounds, the participants were 
asked to confrm they understood the task and the interaction, and 
if so, they used the controller trigger to begin the main experiment. 

After three trials (early condition) or 22 trials (delayed condition, 
midway point) the participant was presented with a screen inform-
ing them that the task would be changing and that in all remaining 
trials, an adversary would be “tracking their behavior during the 
decision phase” and attempting to predict which card they would 
choose. They were also informed that success on each following 
trial would be determined by both selecting a correct match and 

avoiding their choice being predicted by the adversary1. After the 
participant reviewed this information, the experimenter verbally 
asked whether the information was clear and prompted for any 
fnal questions before instructing the participant to continue with 
the experiment when ready. 

All participants completed all 44 non-practice trials. Upon com-
pletion of the last trial, a screen appeared summarizing the par-
ticipant’s performance across all trials (counts of correct matches, 
and successful avoidance of prediction), and displaying their fnal 
success score and bonus compensation earned. 

After removing the VR headset, the participant was asked to 
respond to a short questionnaire and structured interview covering 
their beliefs about the biometric data that was used, strategies 
they employed, and confdence in their efcacy2. Once complete, a 
debrief form and media release form were signed, and fnally the 
participant was provided their incentive payment and told they 
may exit the lab. 

The recruitment process and study protocol was approved by 
the local ethics review board. 

2.5 Data Structure, Cleaning, and Analysis 
The VR experiment was implemented in C# using the Unity Editor 
(version 2019.3.0f6), Steam VR (version 1.9.16), and Steam VR Unity 
Plugin (version 2.5.0). Telemetry was recorded in the update loop 
and included 3-dimensional position and rotation vectors for the 
HMD (head motion), and controller (arm motion). Two types of gaze 
data were collected. Fixations were recorded using the Vive Pro Eye 
SRanipal SDK (version 1.1.0.1) which infers in-scene gaze target 
objects via the Tobii Gaze-to-Object-Mapping algorithm 3. This 
data type was converted into a series of fxation records tracking 
start and stop timestamps, as well as the scene element fxated. 
Secondly, raw gaze data was recorded in the update loop providing 
a gaze origin and direction vector in world coordinates, as well as 
an approximate vergence distance allowing tracking of the implied 
(x ,y, z) coordinates of raw gaze target. 

Physiology data including heart rate, inter-beat interval (IBI), 
and electrodermal activity, was extracted from data fles produced 
by the E4. We extracted EDA spike timestamps using peaku-
tils [25], and computed heart rate variability (HRV) based on IBI 
records using the HRV Python library [5]. All data was aligned 
and registered by comparing synchronized device timestamps and 
trial-by-trial metadata recorded by the Unity experiment. All ex-
periment code is available in an MIT licensed repository: https: 
//github.com/onejgordon/cec_vr. 

1During experimentation, the adversary was programmed to make predictions based 
on a simple gaze-based heuristic trivial to compute in real-time. Because only an 
aggregate success score was provided to participants after all trials were complete, the 
specifc mechanism of prediction could not infuence participant behavior.
2The questionnaire and interview were intended as exploratory methods to capture 
unexpected responses and hear from participants in their own words. While the 
experimental study and quantitative results are the primary contributions of this work, 
the qualitative data allowed for more nuanced interpretation and set up possible focus 
areas for future, more in-depth investigation.
3For details on Tobii’s G2OM algorithm, see https://vr.tobii.com/sdk/technology/tobii-
g2om/ 
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2.6 Predictive Model 
To assess participants’ efectiveness at protecting privacy of in-
tent, we trained a discriminative machine learning model to predict 
a participant’s ultimate choice of card. We excluded trials where 
the participant failed to choose either card in the allotted time, so 
the model was required only to correctly predict a binary label 
corresponding to choose left or choose right. Data available to the 
predictive model included all physiological and behavioral data 
collected during the 10-second decision phase, which was clearly 
demarcated to participants by a text alert and changing background 
color (see section 2.6.2 for details). Data captured during the selec-
tion phase, such as participants’ arm motion to pick up a card, was 
not available to the algorithm. 

We conducted experiments within two related prediction 
paradigms both consistent with plausible real-world settings but 
presenting unique challenges. 

In the frst, we trained a participant agnostic (PA) model to 
predict participant choice without any identifying information 
about the participant or their behavior in other trials. The pre-
diction problem is posed in the classical machine-learning format, 
to learn a predictive model: MPA = P(Yt |Xt ), where Yt is the choice 
label for trial t , and Xt is the corresponding feature vector. 

In the second paradigm, we trained an ensemble of behavioral-
typology (BT) models that frst group participants based on sev-
eral rounds of trial data (including choice labels). The model is 
then required to predict participant choice for all remaining trials. 
This paradigm was motivated by the qualitative observation that 
participants’ choices often became predictable to the experimenter 
once a strategic pattern was detected. 

As such, the behavioral-typology model is given trial data and 
labels from the frst 3 adversarial trials completed by each par-
ticipant. The prediction problem for each trial t becomes MBT = 
P(Yt |Xt , X0,1,2, Y0,1,2). Here, Yt and Xt are defned as before, and 
X0,1,2 and Y0,1,2 are the concatenated data and labels respectively 
from the frst three trials. 

To test this model, we chose a simple heuristic based on the most 
choice-informative feature according to exploratory analysis of the 
training set: the proportion of eye fxations on the chosen card. 
Participants were assigned a behavioral-typology based on this 
metric (< 33%, < 34−66%, and > 67%). Independent classifers were 
trained for each of the three typologies of training participants. At 
test time, the fxation heuristic was again used to assign a typology 
to each test participant (based on an estimate using only the frst 3 
adversarial trials), and inference was performed with the associated 
classifer. 

2.6.1 Training Paradigm. Both prediction problems used the same 
dataset which was produced by randomly assigning 50% of partici-
pants into each set (Ntrain = 28 and Ntest = 27), and then building 
a feature matrix (see following Section 2.6.2) where each row corre-
sponded to a single non-practice trial (excluding those without a 
successful card selection) from a single participant, with set (train 
vs. test) determined by the participant’s assignment. As such, all 
models were tested using trials from novel participants, with no 
opportunity for train-test leakage. The resultant matrix contained 
1200 trials of which 52% were used for training. To compare pre-
dictive performance and the success of obfuscation, independent 
models were trained on pre- and post-adversarial trials separately. 

We tried a number of of-the-shelf classifcation algorithms for 
this task, and report results for two that performed best overall: 
Scikit-learn’s implementation of the Random Forest Decision Tree 
(RFDT) and Gradient Boosted Decision Tree (GBDT) classifers [28]. 
Due to the limited sample size and lack of a separate evaluation set, 
only minimal hyper-parameter tuning was performed in order to 
avoid overftting the test sample. 

To assess each model’s performance we report accuracy scores 
(percent of trials correctly predicted) across all test participants’ 
trials. 

2.6.2 Feature Engineering. 

Fixations and Gaze. To conform with the training paradigm 
which called for the generation of a single binary prediction per 
trial, we employed a number of common techniques to extract 
lower-dimensional feature vectors from the high-dimensional raw 
gaze and fxation data collected during each trial’s decision phase. 

Fixations, which were tallied with a start and stop timestamp and 
target object, were used to produce features indicating the fxation ÍFicount (Fi ) and fxation fraction ( ) for each key object in the 

j Fj
scene (e.g. left card, right card, holder, table). Since each table card 
was expected to be a particularly informative region of interest, 
we also computed the minimum, maximum, and mean duration of 
fxations on each. Additional fxation-based features included: last 
and second to last fxation object, and percent of trial for which 
eyes were closed. 

In contrast to discrete fxations, features based on raw gaze 
points have the potential to capture behavior in which participants 
look near but avoid direct fxation upon an object of interest. We 
computed simple descriptive features from the mean, mode, and 
standard deviation of each of the three coordinate dimensions. 

Head and Controller Motion. To capture dynamics of the con-
troller and head mounted display (HMD), which measures head 
position and rotation, we included descriptive statistics from the 
position and rotation of each (e.g. HMD Y-position standard devia-
tion, controller yaw mean, fnal HMD roll). Position and rotation 
features included an absolute version, as well as one relative to trial 
start. We estimated mean and maximum velocity based on position 
deltas and timestamps. 

Finally, to capture more granular information that might indicate 
the trajectory of head and arm motion, we broke the decision phase 
into 10 equal duration segments, and included features for 3-axis 
position snapshots at each time point. 

3 RESULTS 
Our analysis indicates signifcant changes when comparing be-
havior between adversarial and non-adversarial trials, as well as 
substantial individual diferences during performance of the task. 
In Section 3.2 we review results, including the post-task question-
naires and interviews, related to apparent behavioral strategies and 
avoidance of prediction. 

3.1 Efect of Adversary 
In the following sections we report results of analyses comparing 
data before and after each participant received the adversarial in-
struction. Unless stated, analyses include participants from both 
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early adversary and delayed adversary conditions. The physiologi-
cal and behavioral variables analyzed exist on a vague continuum 
from signals typically considered involuntary (e.g. heart rate vari-
ability and electrodermal activity), to those usually interpreted as 
the result of intentional, conscious action (e.g. gross arm move-
ments). The very premise of this study rests on the ambiguous 
middle ground, where participants may attempt to control or alter 
behaviors they know to be under observation in order to obfuscate 
their true intent. Which hand motions, head tilts, or saccades are the 
product of voluntary control versus involuntary physiological or 
motor outputs cannot be established by our analyses, or indeed any 
algorithm [16]. Though post-task interviews do shed light on the 
strategies consciously selected by participants, self-reports provide 
only a subset of all efects on behavior exhibited. For the purposes 
of this study, however, we need not discriminate voluntary versus 
involuntary action, and rather ask only how measurable behav-
iors change, and to what extent these changes afect the ability 
of an algorithmic agent to successfully predict a participant’s ulti-
mate choice. For an analysis of behavior changes consistent with 
self-reported strategies, see Section 3.2. 

3.1.1 Physiology. Though a slight peak is observed after adver-
sarial trials start, we found no statistically signifcant diference in 
heart rate between non-adversarial and adversarial trials. Results 
suggest that the number of EDA spikes reduced post adversary 
(t = 1.92, p = 0.059), though temporal and learning efects are 
additional potentially confounding causes (see Figure 3a and 3b). 

3.1.2 Movement. In adversarial trials, participants tended to move 
their arm and head less. Specifcally, we assessed the range of mo-
tion along each rotational dimension (pitch, roll, yaw), as θranдe =
max(θ ) − min(θ ). Range of all three dimensions for both controller 
(arm) and HMD (head) was signifcantly lower in post-adversary 
trials (statistical test results shown in Figure 4). 

3.1.3 Gaze. The distribution of raw gaze data also signifcantly 
shifted during adversarial rounds. Both the mean and standard 
deviation of gaze target height (ymean , t : −3.55,p < 0.001;
ySD , t = −3.55, p < 0.001) were signifcantly lower with adver-
sary. 

3.2 Strategic Behavior and Prediction 
3.2.1 Self-Reported Strategies. Post-task questionnaires and inter-
views probed participants on how they interpreted the requirements 
of the post-adversary task, how they modifed their behavior (if at 
all) to avoid prediction, as well as the experience of being asked 
to make a decision under adversarial surveillance. While the pri-
mary motivation for these interviews was to verify participants’ 
comprehension of the task, they contain some useful insights into 
conscious strategies used, as well as the challenges posed by the 
task overall. 

Questionnaire responses indicate that participants primarily ad-
justed behavior related to gaze and arm motion (see Figure 5). In 
interviews, participants identify a range of meta-strategies which 
we categorize as signal dampening, signal randomizing and overt 
misdirection. Signal dampening strategies included the suppres-
sion of behaviors that participants believed may give away their 
intent, such as holding their head still, reducing motion in their 

(a) Heart rate time-series for all delayed condition participants,
across full session duration. Red dashed line indicates adversarial
transition. 

(b) Count of EDA spikes, pre- and post-adversary. Reduction in 
spikes was not statistically signifcant according to independent t -
test. 

Figure 3: Analysis of physiology data before and after adver-
sary. 

arm, pointing their hand in a neutral direction, entraining gaze on 
a neutral portion of the table or on the timer, and looking near but 
not directly at the cards on the table. Signal randomizing techniques 
included both adding excess behaviors during each trial, such as 
shifting gaze widely and continuously, moving their head back and 
forth at random, as well as randomizing overt asymmetrical behav-
iors by pointing the controller sometimes at the chosen card, and 
sometimes away. 

Overt misdirection included intentional actions that ‘telegraph’ 
intent opposite to true choice, such as fxating gaze or head position 
for long durations on the opposite card, moving the controller 
towards the opposite card during the decision phase, etc. 

Several participants reported initially looking at or near the table 
cards just long enough to make their decision, then switching to 
a misdirection or obfuscation strategy for the remainder of the 
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Figure 4: Head and controller range pre- (blue) and post-
adversary (red). Range for both reduced signifcantly post-
adversary suggesting support for signal dampening strategy. 
p-value for independent sample t-test, and Cohen’s d shown 
above each plot. 

Figure 5: Results from post-task survey. Left: Participants 
reported modifying multiple behaviors with gaze and arm 
motion most often selected. Right: 61% of participants re-
sponded ’Agree’ or ’Strongly Agree’ when asked if they be-
lieved they were able to successfully infuence the adver-
sary’s ability to predict their choice. 

decision phase: “I would look at both and fgure out what the right 
answer was, and then I would stare at the wrong one, or go of 
into my own thoughts” (PP 012). Other participants talked about an 
evolving thought process on obfuscation, and the realization that 
consistent misdirection may also be predictable: “At frst I thought, 
oh it makes sense to try not to do what you would normally do, like 
if you’re going to pick this, then look at the other one for longer. 
After a while I was like, oh that’s also predictable, so maybe switch 
it up.” (PP 015). 

Over 60% of participants believed they were able to infuence 
the adversary’s ability to predict their intent using the strategies 
they employed. 

3.2.2 Agency and Cognitive Load. While the majority of partici-
pants reported that they believed they were able to infuence the 
adversary’s prediction, some weren’t sure, and others disagreed. 

Figure 6: The increasing overlap of the gaze x-coordinate 
distribution between left vs. right trials post-adversary illus-
trates behavior change to deter prediction based on gaze. On 
average, however, fnal gaze point was highly predictive of 
choice both pre- and post-adversary. 

In post-task interviews, some of these participants noted that they 
didn’t understand how the adversary was making its predictions, 
and so felt it wasn’t clear how they could efectively respond (PP 
046, PP 016, PP 057): “I guess I just didn’t really know what it was 
going to be looking at, so I didn’t know what to change” (PP 017). 
Others found the matching aspect of the task challenging, and felt 
they needed to focus on selecting the right card rather than avoid-
ing prediction: “I was more preoccupied with getting the right card, 
so kind of forgot about [the adversary] sometimes” (PP 003). For 
another, the decision and the mechanics of making their selection 
took priority: “I was still trying to pick the right card, like grab it 
in the right amount of time” (PP 016). 

These assessments highlight that for some participants uncer-
tainty about the dynamics of algorithmic prediction undermined 
their feeling of agency. Additionally, the cognitive load imposed by 
the combination of the card matching task and time limit were chal-
lenging for some participants to balance with the need to obfuscate. 
In the following section we review results comparing biometric data 
when left is chosen versus when right is chosen, thus identifying 
choice-correlated asymmetries likely exploited by the predictive 
model. 

3.2.3 Correlates of Choice. To detect behavioral patterns that 
might be leveraged by a predictive model, we performed a variety 
of exploratory analyses comparing raw data and features collected 
during the decision phase, segmented by participant choice. Any 
asymmetries seen either across the full training set, or within a 
substantial sub-group, might indicate strategic behaviors or invol-
untary predictors correlated with intent. We report several such 
asymmetries below. 

Gaze. Even when averaging across the full training population, 
the x-coordinate of the fnal raw gaze point was highly predictive 
of choice (d = −0.447, t = −8.68, p < 0.0001, see Figure 6). 

Longitudinal Observations. Though comparing summary statis-
tics of gaze and motion data highlights systematic diferences in 
behavior, this approach ignores the richness of temporal visual 
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attention inherent to this decision-making paradigm. By analyzing 
individual participants movement and gaze longitudinally (both 
across trials, and within each trial), additional behavioral regulari-
ties appear. 

Figure 7: Total fxation duration (top) and fxation time-
series (bottom) by trial for 4 selected participants (PPs). 
Green: fxations on chosen card; Blue: fxations on other 
card; Gray: fxations on non-card objects (shown in sequence 
charts only). Trials progress vertically from top to bottom, 
and the dotted red line indicates the beginning of adversary 
trials. Note that trials for which no card was selected are 
omitted. 

Figure 7 illustrates trial-wise fxation time-series and total du-
ration by card (chosen versus not chosen) for selected individual 
participants. These plots demonstrate dynamics of fxations, and 
behavioral change post-adversary, found to be representative of 
common behavioral patterns among the training population. 

Participants PP 010 and PP 005 both favored fxations on the card 
they eventually chose prior to adversary, but show very diferent 
behavior post-adversary. Post-adversary, PP 005 reduces fxation 
duration on their chosen card, but both fxation duration, and fnal 
fxation (note the regularity in fnal fxation) still indicates choice 
on nearly every post-adversary trial. PP 010, on the other hand, 
is likely using a misdirection strategy and intentionally switches 
visual attention to the opposite card. 

PP 014’s fxation behavior illustrate a key fnding—in some cases, 
conscious obfuscation may unintentionally unmask intent. While 
fxations are well-balanced pre-adversary, the participant’s choice 
becomes signifcantly more predictable post-adversary under an 
apparent strategy of fxating on the opposite card. 

Overall, these analyses highlight the value of providing temporal 
gaze sequence features (in addition to duration and fxation count) 
to the predictive models. 

Arm Movement. An analysis of arm movement (measured by 
controller trajectories), reveals a substantial behavior change pre-
and post-adversary. Trajectories are consistently stereotyped by 
choice in early non-adversarial trials, and show many participants 
preemptively (prior to selection phase) moving their controller over 

Figure 8: Top-down view of controller trajectories (left), f-
nal position (middle) and fnal velocity (right), at termina-
tion of decision phase. Turquoise: right selected; Magenta: 
left selected. Clear choice correlation can be seen in all 
three metrics pre-adversary. Post-adversary data exhibits 
less stereotyped segmentation, but clear diferentiation is 
still visible in both fnal position and fnal velocity. 

Figure 9: Model accuracy comparison for participant-
agnostic predictor, with forward addition of feature-sets. 
Feature sets were added as follows: 1) Gaze features, 2) Fixa-
tion features, 3) HMD features, 4) Controller features. 

the chosen card in preparation for selection. In post-adversary trials, 
we see support for self-reported strategies involving constrained 
controller motion as well as misdirection (e.g. the density of fnal 
controller positions over the opposite card in the bottom center 
plot in Figure 8). 

Despite this visible obfuscation behavior, choice-correlation re-
mains in fnal controller position, and particularly in fnal velocity. 
We discuss these fndings further in Section 4. 

3.2.4 Algorithmic Prediction. 

Participant-Agnostic Predictor. Even in the more challenging 
participant-agnostic paradigm where the predictive model must 
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identify features successfully correlating with choice without the 
context of prior participant behavior, prediction rates were high. 
The best-performing model was the Gradient Boosted Decision 
Tree (GBDT), with a prediction accuracy of 93% on pre-adversary 
trials, and 73% on post-adversary trials (see Figure 9). 

The most predictive features included last gaze fxation target, 
mean gaze X-coordinate, and fnal HMD roll ofset. 

Behavioral-Typology Predictor. As anticipated, the behavioral-
typology (BT) predictor improved overall prediction accuracy, 
achieving 72.4% for the most efective (least predictable) strategy 
typologies, and 82.7% for the least efective behavioral typologies 
(see Figure 11 for BT model performance details). 

The majority of participants are reliably predicted in between 
75 to 100% of trials using this technique (see accuracy distribution 
post-adversary in Figure 10). 

Figure 10: BT model predictability pre-adversary (x-axis) 
compared to post-adversary (y-axis). Some test participants 
(red) became more predictable post-adversary. The distribu-
tion of predictability (right) illustrates that the majority of 
participants’ choices could be successfully predicted in be-
tween 75% to 100% of their trials. Note: the chart at left in-
cludes only test participants in the delayed adversary condi-
tion, since BT model performance cannot be assessed from 
the three pre-adversary trials. The chart at right includes all 
test participants across both conditions. 

Table 1 provides a summary of model prediction accuracy. 

Strategic Efcacy. We can quantify the efcacy of a participant’s 
change in behavior by comparing our trained model’s prediction 
performance between pre- and post-adversary trials. We defne a 
metric for strategic efcacy (Ψ) as follows: 

Ncorrect,pre Ncorrect,post 
Ψ = − 

Ntotal,pre Ntotal,post 

If eforts to conceal intent are efective, prediction accuracy post-
adversary will be lower (positive Ψ). Figure 10 plots BT model 
accuracy pre- and post-adversary thus illustrating strategic efcacy 
(distance from diagonal). Participants for whom prediction accu-
racy decreased are plotted in green, while increases in prediction 
accuracy are plotted in red. The clustering of test participants be-
low the diagonal illustrates that, through strategic adjustment to 
behavior, most participants were able to successfully reduce choice 
prediction, but not by much. Indeed, only one participant (shown 

Table 1: Summary of predictive model performance. Best-
performing models for each prediction paradigm are listed 
for both pre-adversary (pre) and post-adversary (post) trials, 
Gradient Boosted Decision Tree (GBDT) for the Participant-
Agnostic (PA) predictor, and Random Forest Decision Tree 
(RFDT) for the Behavioral-Typology (BT) predictor. 

Model Train Accuracy Test Accuracy 

GBDT (PA, Pre) 97.1% 92.0% 
GBDT (PA, Post) 72.0% 73.4% 
RFDT (BT, Pre) – 91.0% 
RFDT (BT, Post) – 80.4% 

at lower right) evaded prediction in more than half of trials, and 
on average across participants, 80.4% of post-adversary trials were 
successfully predicted. 

Also visible in Figure 10, is the surprising fnding that for a 
number of participants (red dots), eforts to become less predictable 
had the opposite efect producing an increased prediction accuracy 
post-adversary. 

To further investigate behavioral and physiological diferences 
that might explain variance in strategic efcacy, we compared 
two groups of test participants: those less than 70% predictable 
post-adversary, which we term ‘efective’, and those at least 70% 
predictable post-adversary, which we term ‘inefective’. The lat-
ter group can be seen as the rightmost disjoint cluster in the his-
togram in Figure 10. We fnd that the efective group exhibited 
statistically signifcant reduction in controller movement (yaw std. 
dev.: d = 1.544, t = 3.012,p = 0.006; fnal pitch: d = 0.932, t = 
9.950, p < .001; roll range: d = 0.583, t = 5.469, p < .001), 
head movement (pitch std. dev.: d = 0.745, t = 6.964,p < .001; 
roll range: d = 0.848, t = 8.111, p < .001; yaw range: d = 
0.692, t = 6.758,p < .001), percent of fxations on chosen card 
(d = 1.470, t = 2.588, p = 0.016) and total fxation duration on 
chosen card (d = 1.263, t = 2.205, p = 0.037). These results to-
gether indicate that, on average, the efective group moved their 
head and arm less during the decision phase, while also fxating less 
frequently and for shorter durations on the card they ultimately 
selected. 

4 DISCUSSION 

4.1 Behavior and Prediction 
The experimental paradigm presented here was designed to provide 
insights into both the sensitivity of behavioral and biometric data 
when leveraged towards the prediction of future decisions (RQ1/2), 
the response of individuals confronted with a specifc kind of ad-
versarial surveillance (RQ3), as well as the interaction between the 
two in the efect of awareness of tracking on an individual’s ability 
to maintain private intentions (RQ4). 

Classifcation accuracy results indicate that collected data were 
extremely predictive of choice (over 90% accuracy) for participants 
during pre-adversary trials. Though pre-adversary prediction was 
performed primarily to produce a baseline against which to compare 
performance during adversarial trials, this fnding alone deserves 



CHI ’21, May 8–13, 2021, Yokohama, Japan Gordon et al. 

Figure 11: Behavioral-Typology model performance for 
each inferred typology based on proportion of fxations: fx-
ations prefer chosen card, fxations prefer other card, and 
mixed. 

some consideration. In the absence of any reason to mask intent, be-
havioral data collected during deliberation was sufcient to predict 
eventual choice in the vast majority of trials. 

In adversarial trials, after being informed of the imperative to de-
cide which card to select without revealing intent, most participants 
adopted strategies based on logical assumptions about the dynam-
ics of prediction. Participant interviews revealed a thought process 
involving the various data they believed might be used by the ad-
versary. The gaze calibration exercise at the beginning of the VR 
session suggested to many participants that their eye movements 
may be among the data used by the adversary to anticipate their de-
cision. Seeing their controller in VR was another strong signal that 
arm motion might be a target of tracking, as well as an opportunity 
for masking or obfuscation. Some participants observed that during 
pre-adversary trials their hand would begin to move just before 
the end of the decision phase, and reported attempting to adjust, 
invert, or randomize this behavior post-adversary. Despite correctly 
identifying these signals, however, components of gaze, head, and 
arm motion all remained correlated with choice when averaged 
across the test sample. These correlations, in aggregate, allowed the 
classifers within both prediction paradigms to successfully predict 
card choice in spite of the strategies employed. 

To understand why, it is instructive to revisit one of the most 
informative data types captured: gaze fxations. In Figure 7, PP 
010 and PP 005 both demonstrate signifcant adjustments to gaze 
dynamics upon the beginning of adversarial trials. Both strategies, 
once identifed, remain predictive of choice—PP 005 reduces overall 
fxations on either card, and appears to randomize fxations while 
deciding, but fxates their chosen card at the end of each decision 
phase (green lines at end of post-adversary trials). PP 010 also 
reduces overall card fxations, and inverts their gaze behavior in a 
way that remains highly correlated with choice. 

Optimal behavior, as any child fond of rock-paper-scissors (or 
game theory) intuitively knows, depends upon the randomization 
of behavior in order to minimize correlations between observable 
data and intended action. Randomization, even of a single series of 
discrete choices, however, is known to be impossible for humans 

to achieve [32]. In contrast to univariate randomization, our task is 
especially challenging due to its multi-dimensionality—it requires 
successful randomization of all detectable behaviors simultane-
ously. 

Finally, several of the strategies detected appear consistent with 
the types of intuitive behavior that might be efective at masking 
intent from a human observer. This is one interpretation of results 
showing lowered head pitch (Figure 4), and lowered gaze, which 
fail to obfuscate the target of gaze from eye-tracking hardware like 
that used in this study. 

4.2 Limitations and Future Work 
The prediction accuracy results achieved in our analysis are not 
meant to establish a ceiling. Rather than developing an optimal 
behavior prediction tool, the aim of this work was to assess the 
feasibility of intent prediction, as well as the range of individuals’ 
responses to an explicitly surveilled task paradigm. With a larger 
training set, it is likely that even the standard statistical techniques 
used in this analysis would learn an improved behavioral model 
capable of exploiting the regularities of a wider variety of strategies 
and therefore achieve prediction accuracy improvements. 

An additional limitation stems from the simplistic behavioral-
typology inference model which we based on a single metric (card 
fxation ratio) indicative of a single behavioral strategy. With a 
slightly larger participant pool, an unsupervised learning approach 
identifying natural subject clusters or axes of behavioral variation 
would likely have produced improved prediction accuracy for the 
BT model. 

While our results suggest dynamics that may extend into real-
world contexts in which individuals interact with surveillance sys-
tems, the typical considerations of the generalizability of in-lab 
fndings apply here. While a signifcant performance-based incen-
tive was used to motivate task success, behavior in a setting with 
more signifcant potential consequences—as is increasingly relevant 
to real-world surveillance—might well display dynamics diferent 
from those observed in this study. Relatedly, though the game-
based setting was conducive to our analysis, studying participants 
as they make more naturalistic decisions (e.g. who to vote for, or 
how much to tip) may ofer insights that more easily extend to 
everyday behavior. 

We hope future work will build on this preliminary study to 
develop a more holistic understanding of individuals’ reasoning 
about and response to biometric surveillance. 

4.3 Implications 
The kinds of privacy risk supported by our fndings are likely best 
addressed through a combination of public awareness, regulatory 
action, and the concerted eforts of designers [2, 29, 36]. 

Among other proposed solutions, Bailenson suggests users may 
take it upon themselves to use hardware flters capable of adding 
noise and reducing the fdelity of collected data [3]. Our fndings, 
however, suggest that users may overestimate the efcacy of more 
intuitive obfuscation strategies, and underestimate the sensitivity of 
the data collected from them. As such, hoping to encourage costly 
user action such as obtaining and using obfuscation devices may 
not be a reliable solution. 
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Public education, however, must certainly play a role. Alphabet’s 
“Digital Transparency in the Public Realm” initiative is one example 
that hopes to encourage cities and other actors collecting data in 
public spaces to use a set of colored privacy icons to indicate the 
types and sensitivity of data being collected [14]. The behaviors and 
misconceptions illuminated by our results, however, indicate some 
critical limitations of this efort as well. What will an individual 
who notices an eye-tracking symbol on a light-post do with this 
information? Will Facebook require users of its recently announced 
AR glasses to wear warning labels to inform passersby of ongoing 
tracking [11]? What use is informing members of the public about 
surveillance, without instructions for opting-out? And if, as was the 
case for some of our participants, strategies to protect one’s privacy 
instead act to exposes sensitive information, might messaging like 
this cause additional harms? 

Even more fundamentally, however, any response to tracking 
technologies must contend with the fact that what is being collected 
is a moving target: the signals hidden within raw data evolve with 
new algorithms, new users, and integrations with additional data 
sources. The sensitivity emerges not from the data itself, but what 
can be done with it. This study highlights the counterintuitive 
nature of “what can be done,” and as such the challenges privacy 
advocates must overcome when communicating these ideas in the 
public sphere. 

4.4 Ethical Considerations 
It is crucial, when conducting work either employing or studying 
technologies that have been used to harm individuals and commu-
nities, to critically exam the potential impact on these populations 
and society as a whole. We reason that this research is unlikely to 
reinforce harms, and holds the potential to bring valuable data to 
academic and public dialogue regarding the capabilities, risks, and 
vulnerabilities that may be exploited by algorithmic surveillance. 

First, this work does not develop any novel algorithm or com-
putational model that might improve predictive performance, but 
rather explores the efcacy of of-the-shelf machine learning tools. 
Second, that the fndings of this work likely parallel research con-
ducted privately within organizations seeking to leverage algorith-
mic prediction in the interest of fnancial or political gain. If our 
speculation related to potential prediction accuracy is correct, we 
must acknowledge the multiple orders of magnitude that separate 
the sample size and scope of data used in this study with that avail-
able to companies and other organizations already in the business 
of collecting biometric data from individuals. 

5 CONCLUSION 
In this work, we examined the expectations individuals hold about 
biometric surveillance, and how these beliefs infuence behavioral 
response to a tracked setting. Our results suggest that participants 
hold a range of priors about the nature of biosignals that might 
be leveraged for prediction, and use a wide variety of strategies 
to attempt to make a future choice less predictable. While some 
participants questioned their agency in evading the adversary, most 
modifed their behavior and successfully reduced their prediction 
accuracy. However, data collected remained highly predictive of 
choice (over 80% mean accuracy), and the majority of participants 

were correctly predicted by the behavioral-typology model in 75-
100% of trials. Importantly, a meaningful subset of participants 
adopted a strategy that on average increased the model’s ability to 
successfully predict their choice, suggesting the counterintuitive 
nature of the dynamics of algorithmic prediction. 
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